Astragalus polysaccharides improve cardiomyopathy in STZ-induced diabetic mice and heterozygous (SOD2+/-) knockout mice

نویسندگان

  • J. Ju
  • W. Chen
  • Y. Lai
  • L. Wang
  • H. Wang
  • W.J. Chen
  • X. Zhao
  • H. Ye
  • Y. LI
  • Y. Zhang
چکیده

Oxidative stress plays an important role in the development of diabetic cardiomyopathy. In the present study, we determined whether the effect of astragalus polysaccharides (APS) on diabetic cardiomyopathy was associated with its impact on oxidative stress. Streptozotocin (STZ)-induced diabetic mice and heterozygous superoxide dismutase (SOD2+/-) knockout mice were administered APS. The hemodynamics, cardiac ultrastructure, and the apoptosis, necrosis and proliferation of cardiomyocytes were assessed to evaluate the effect of APS on diabetic and oxidative cardiomyopathy. Furthermore, H2O2 formation, oxidative stress/damage, and SOD activity in cardiomyocytes were evaluated to determine the effects of APS on cardiac oxidative stress. APS therapy improved hemodynamics and myocardial ultrastructure with reduced apoptosis/necrosis, and enhanced proliferation in cardiomyocytes from both STZ-induced diabetic mice and heterozygous SOD2+/- knockout mice. In addition, APS therapy reduced H2O2 formation and oxidative stress/damage, and enhanced SOD activity in both groups of mice. Our findings suggest that APS had benefits in diabetic cardiomyopathy, which may be partly associated with its impact on cardiac oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Critical Role of Astragalus Polysaccharides for the Improvement of PPRAα-Mediated Lipotoxicity in Diabetic Cardiomyopathy

BACKGROUND Obesity-related diabetes mellitus leads to increased myocardial uptake and oxidation of fatty acids, resulting in a form of cardiac dysfunction referred to as lipotoxic cardiomyopathy. We have shown previously that Astragalus polysaccharides (APS) administration was sufficient to improve the systemic metabolic disorder and cardiac dysfunction in diabetic models. METHODOLOGY/PRINCIP...

متن کامل

The effect of fluoxetine on thermal hyperalgesia in STZ-induced diabetic mice: possible involvement of 5-HT1/2 receptors

Diabetic neuropathic pain, an important micro vascular complication in diabetes mellitus, has been recognized as one of the most difficult types of pain to treat. Lack of understanding of etiology involved, inadequate relief, development of tolerance and potential toxicity of classical anti-nociceptive agents warrants the investigation of newer agents to relieve this pain. The aim of the presen...

متن کامل

The effect of fluoxetine on thermal hyperalgesia in STZ-induced diabetic mice: possible involvement of 5-HT1/2 receptors

Diabetic neuropathic pain, an important micro vascular complication in diabetes mellitus, has been recognized as one of the most difficult types of pain to treat. Lack of understanding of etiology involved, inadequate relief, development of tolerance and potential toxicity of classical anti-nociceptive agents warrants the investigation of newer agents to relieve this pain. The aim of the presen...

متن کامل

Decreased lipoprotein clearance is responsible for increased cholesterol in LDL receptor knockout mice with streptozotocin-induced diabetes.

OBJECTIVE Patients with diabetes often have dyslipidemia and increased postprandial lipidmia. Induction of diabetes in LDL receptor (Ldlr(-/-)) knockout mice also leads to marked dyslipidemia. The reasons for this are unclear. RESEARCH DESIGN AND METHODS We placed Ldlr(-/-) and heterozygous LDL receptor knockout (Ldlr(+/-)) mice on a high-cholesterol (0.15%) diet, induced diabetes with strept...

متن کامل

Antioxidants improve the phenotypes of dilated cardiomyopathy and muscle fatigue in mitochondrial superoxide dismutase-deficient mice.

Redox imbalance elevates the reactive oxygen species (ROS) level in cells and promotes age-related diseases. Superoxide dismutases (SODs) are antioxidative enzymes that catalyze the degradation of ROS. There are three SOD isoforms: SOD1/CuZn-SOD, SOD2/Mn-SOD, and SOD3/EC-SOD. SOD2, which is localized in the mitochondria, is an essential enzyme required for mouse survival, and systemic knockout ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017